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(Goal

Study factorization in cases with singular convolutions

/Olda: C(2)dn(z) = /OleE qb;(;:) N /OdCE é .

v/ ® Define SCET 11 independent of UV and IR regulators

(in particular should not rely on dim.reg.)

v/ e Obtain finite EFT amplitudes & resolve singularity problem

® Derive factorization theorem that separates modes by
both invariant mass and rapidity, with RG evolution etc.



B — mtv SCETT
Step 1: needs time-ordered
products
Q2 > QA Q(O) _ Xn,wFH;'}
Q(l) — Xn,wiglgfiw’FHZ
with
W _
Requires a power Leg = (Y )igh X,
suppressed interaction
f(E) = / d2T(z,E) (7Y (2, E) + C(E) ¢(PM(E) sy shlgilsley
problem here



F(B) = [d2T(=.B) (P (2, )
+ C(B) ¢BM(B)

Step 2: (further factorization) QA > A“ SCET1r

ok: (FM(2) foB/daz/dk+J 2,2, kT, E)oum(z)op (k™)

BM_7

______ 1
% » / dx ¢7;(2x) =777 endpoint singularity
0

for phenomenology
(PM(E) is left

unfactorized

one x from the Wilson line
one x from the gluon propagator



Wilsonian vs. Continuum EFT



Wilson effective action
e_SA
for soft modes

removing modes with A —6A < E < A

e—SA—éA :/ d¢ e—SA
VAN

Continuum  £EFT — ¢(4)O(u)

operators for

soft modes @, (:“)

Wilson coefficients

for hard modes C (:“)
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Sending A to 0O includes the hard region in the matrix elements
of our operators, but we fix C (u) to correct for this.
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Some EF1’s need another dimension.

I’ll call these “differential EF1’s” .



Non-relativistic field theory

Momentum Regions

Kk
h ard m m >666666<
potential: mv? mu H*H
soft: mv mv gi ; ,,,,,,
S
ultrasoft: muv?  mu? e
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A formalism for jets.

B — X

eTe” — two jets
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® (o overlaps only in the UV, fixed by Wilson coefhicients



remove A

pl
°© 4y, 4 44 label & residual
A _1 _ momenta
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® gb has label momentum p; # 0 l :/’}/ .
‘Q_;?
Z /dplr F(qb)(pl) = /dpl [F(%)(m) — Fs(ggfqa)(pl)}

p17#0

tiling formula

® symmetric story for ¢c which has label momentum p2 # 0



remove A
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® gb has label momentum p; # 0 l :/’} .
‘Q_):z
Z /dpn F(qb)(pl) = /dpl [F(Qb)(p1) — Fs(gg:q“)(pl)}
p17#0
tiling formula K Zero-bin
subtractions

defined in collinear Lagrangian



For cases with singularities
the subtractions are needed
to not double count a region

Beyond this, difterent ways of
implementing the subtractions
correspond to a scheme dependence
in defining the modes.

eg. Gaussians, hard cutofts, ...

Lets define a nice, almost “scaleless”, scheme like MS :

® Take the integrand F’ (4°) (p1) constructed with the p.c. for its region.

® [Fxpand this integrand with P1 scaling as in region G and define

db—4a . . .
I S(u’;t ) by the terms up to marginal order in the power counting.

Z /dplr F(qb)(m) — /dp1 [F(q”)(pl) — Fs(gg:qa)(pl)

p17#0
tiling formula



What has been done in the past?

Z/d% %/ddp Ok 1f p=0 1s harmless.
p

In cases where it 1s not harmless we exploited dimensional regularization:

Method of Regions (Beneke & Smirnov)

Any full theory loop integral depending on scales P; satisfies:

H/ddk F(pi kj)= ) H/dd ki FO (pi, kj)

regions £ J

as long as we set e;r = €yy = € for every region



® Using this, the only errors one makes in defining the EF'T modes are
proportional to (L _ L) . These can be fixed by hand, “a pullup”,

€EUV €IR
. . Hoang, Manohar, I.S.
so that there is only one meaning for €yv .

" Euv
m

Cuv

soft soft
ullu
my my

Cuv '
ultrasoft ultrasoft
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Not elegant, but it works.

® However, dim.reg. does not handle all singularities.
& we were stuck with not being able to handle other regulators.

Tiling formula: can use any regulator, nothing to do by hand.

: 1 1
Subtractions reduce to exactly the needed (— — —) terms for

; cuv IR
dim.reg. setup.



Non-Relativistic EFT (NRQCD, NRQED)

Unphysical singularities come a)
from taking a double limit:

1) k> FE, then k" — 0

soft overlaps ultrasoft region

IR div. in
QCD static
potential

000066 5700060t

\9_9_9‘%9_9_9,/
0090900 4
\Q_Q_QEQ_Q_QJ

k2
2) k() > —, then k() — 0
2m

soft overlaps potential region,
pinch singularity
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Non-singular with zero-bin.

A difterent momentum space
mode describes the
infrared in the region of

the singularity.






Apply to ©) C{/ using dim.reg. in UV
2 .
. g;ﬁ%%y p° # 0 in IR
A B avoids overcounting
Z / d q?“ 2n-(q + p) the usoft region
0+ 21 500) (a2 +i0+
0 o (n-q+i07)((q + p)?+i0")(g*+i0T) ‘
_/ [ 2n - (q + p) B 20 - p ]
(2m)e | (2 - g+i0H)[(q + p)2+i0+](g2+30T) (- q+i0F)[n-gn-p+p2+i0+](g2+30T)
0 2 2 112 L[ P2 2 2 [ subtraction
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® UV collinear singularity comes from 7::q — OO (in subtraction term)

This is crucial for it to be independent of the choice of IR regulator.

Divergences are removed by counterterms as usual.



eg. of another regulator
Cutoffs: Q5 < g7 < A7 0 < (g7)* < A%
no constraint on ¢ 1, p* on-shell

. ' o QO Q_p-
I - W[Lu( o) +in (5 )m (5]

QCD

2
1L
[g—>87: 877;2[ ln(ii)ln(g_)] — #[—M(%)ln(i—)] = #[—M(i%)ln(g_)]—l—...

1 1 = g i) +n () () e (52) -0 (7)) +-

IR matches again,
zero-bin subtraction is crucial.



SCET 11 A=

A
Q

® all known examples of endpoint singularities have > one hadron

e SCETYyr allows us to treat cases with two or more hadrons

¢eg. B - Dn,B—-nlv, e p—e XT

® Cp,S,Cxn are definitely

| modes
required as low energy P~ a
modes
On'
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® all known examples of endpoint singularities have > one hadron

e SCETYyr allows us to treat cases with two or more hadrons
eg. B —-Dn,B—-mlv, e p—e XT

® Cp,S,Cxn are definitely

required as low energy P a
modes
e “messenger” scales O 0\ -

show up in perturbation theory
Becher, Hill, Neubert

but only for certain IR regulators 0
7\ -

Q 7\‘2 _
Must consider effect of confinement.

Beneke, Feldmann; Bauer, Dorsten, Salem

We will see shortly that the O modes can

modes

be absorbed into the other d.o.f.




For our endpoint divergence

/ 1 4 O (25'3) , the singularity comes from taking a double limit:
" ' collinear k= > k=, kT, then k= — 0

: () _
—Q- — O and k= — 0
in QCD was E
S C %
<

encounters the soft
region where
there is another mode

Based on our experience the formula:

P~ A
(gv) _ (av) _ p(aw—4a)
p;o / dp1r F*%(p1) = / dp {F (1) = Fiypy (pl)] 0104

should avoid double counting the soft region,
and thus remove the singularities here too.

Note: absence of onshell modes
between ¢,, and S is due to a — —>

rapidity gap.




Rapidity distinguishes

the d.o.f. (= k—/k+
n~-collinear : Cp ~ 24> 1
soft: Cp ~ A~ 1
Check how this works with a Wilsonian

rapidity cutoff (zero-bin subtraction = 0)

Wick rotated rapidity:  goft: — a2 < (< ad?
collinear: —a*>(, or ( >a’
toy example

] dPk 1 . —1 1 pLF 1, o /p* 2
[fScSar:/ . ' _ — — - ln( )—I——ln ( )__
! (2m)P [(k — €)? + i0F][k? + i0F][(k — p)?2 4 i0F] 1672(p=0*) | e €R e 2 2 12

I —/ 7k 1 1 1
S (277)D —p~ kTt +10T kTk— — ki 40t ktk— — k0t — kﬁ_ 10+

I, = / d°k ! 1 1
) @mP —k— 4+ +i0F kTk— — k2 +i0F ktk— — ktp— — k2 440+



Rapidity distinguishes

the d.o.f. (= /{_/k+
n~-collinear : Cp ~ AT4> 1
soft: Cp ~ A~ 1

Check how this works with a Wilsonian
rapidity cutoff (zero-bin subtraction = 0)

Wick rotated rapidity:  goft: —a? < <a?,
collinear: —a*>(, or (, >a’

toy example

scalar dPk 1 . —1 1 plt 1, o /p Lt 2
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The zero-bin minimal subtractions can be used to handle the overlaps in
dim. reg. This ensures soft does not overlap collinear and visa versa.

Use democratic subtractions to avoid introducing hard cutoft scale

However, these subtractions produce problems with rapidity
divergences in the UV. Standard dimensional regularization
does not sufhice for these.

eg.
from scaling into

APk, 2 collinear region
scalar . Z / I3

soft

L= 24 0FE2 — 2 40+ [—p— bt -0+
s — 0t k= +i0F|[k2—m2+i0t||[—p~ kT 4107 /
. dD]C luzﬁ MQE
N /(QW)D (k2 — 0+ E=+i0F][k2—m24i0t]|[—p~ kt+i0F] - ‘[—€+ k= +i0*][k2—m2+i0*][—p~ kT +i07]

) 1_6; Eé;)_ Zi) { /OM:: [(w_;ﬂm?r . /OOOCZC: (mQ)e}




Lets invent a gauge invariant dim.reg. like regulator
that is formulated at the level of operators:

2
Hy o = [
J(p7 ,k+)[( S)k+F (S qS)kJr} [(gnW)pfF”(WTgn)pE]
. f|e _ f|e
U ) | @S o DL (ST | @)y A (W160);
= J(pj ks pes 1) uze['kilgle(fIsS)kst(Squ)k;] [|pr Lew o n(WTfn)p;]
regulates UV rapidity

divergences

(Using absolute values preserves analyticity;
it corresponds to positive mom. of
particles and anti-particles.)




Lets invent a gauge invariant dim.reg. like regulator

that is formulated at the level of operators: ;

by fim = p
J(7 kN [(@9) Ts(STas)t ] [(EW),-Tu(WEL), -]

dim.reg

reg. _ _ Pi P
- J(pjakj_wu:t):u [(qss)l‘ | s’ ‘

E st €

Py Ky

P !7’\
Py ,ui i c (WTgn)pz_

|k kS|¢
P

= s ko) | B @) sty | | BREE €, i, | s

Note that the factors should be interpreted as in the matrix element

to give M+ dependent distribution functions. Expect something like:
/dk—i_dp J(k+7p_7 M+ :u—) ¢n(p_7 H—y ) qbs( s ot )

An additional ingredient is needed as indicated by the +...



Lets try it out

Three IR Masses, mj, ms, mg ! — soft momentum

p = collinear momentum

dPk 1
Iscalar —
full /(QW)D [(k _ g)2 — m% + i0+][k2 — m% + i0+][(/€ — p)2 — m% + i0+]
2 2 2

16W2Z]j o b [1 In2 (pmﬁ) + Lip (1 - Z—l) + Lip (1 - Z—%’)}

2e

[scalar _ Z /de M ’kﬂ |k+ fﬂ k‘l— 1
soft it k2 {+ k——m?2 +ZO+][k2 m%—|—i0+”_p— k++i0+] ,UE: — O cancels

Jscalar Z /de/ :‘1’26 |k | |k_ _|
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soft =" Tgrzp-mm)|fy B+ ""1(1 )+m2

—1 1 N 1 | <€+> 1 | (m%>+l (E+>+57r
= n(—,)— n n —
1672 (p=41) | 265y, €uv T 2euv K T 24

1 2 A 2
+-? (B) —tn (Z2) 1n (=) + Lin —m—g)]
4 v v et mi

kT — oo regulated

looks good! except for In (7;’—5) term, which had no analog

2€UV

for the Wilsonian rapidity regulator:
+... 1S + Op , with a counterterm coefficient which cancels this term.



Three IR Masses, mj, ms, mg

scalar de 1
Tra / 20)D [(k — £)Z —mZ 1 i0T][k2 — m2 1 07][(k — p)2 — mZ + 0]
~ ooy |30 (o) + Lia(1- 22) + Lia(1 - 73) . IR matches
renormalized

—1 1 m? m3 m3 mi p
soft-Hen = Tp—3 =0 | 2 [ n’ s + L1 - + Lo m2 n ,UZ n T

- —p+ 2
+n? (2 >+12(€)—11n2(p§>+5i]. /
fh— py /2 p 12
vanishes for

prpT = p

]Scalar _ —t _ 1 n2 (p_/“r) _ @
match 167‘(‘2 (p_€‘|‘) 2



What about the messenger modes?

Messenger is absorbed into a P~ A
combination of €, and S 030 -

ot I EP
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Lets see how

Three IR Masses, m;, mg, mg 01—+
study double log
Ol T
: 5 ON —t
What if mq = 0:
scalar —1 1 5 — 407" . Q2 (m%—mg) )
TR = 167r2(p_€+){§1n2[ Q! ] e [ : _W]
T Lis [Q2(m%—m§) —z’0+] Lis [—(m?—mg)(m%—m@] }
§ §
— 2. 2 2, 2 - 2 2
€ — Q M — Moy scalar . - —1 @ %
) s T ™ (m1=0) = 1672 (p=£47) ln(Q2>ln(Q2>

If we set M3 = 0 we become sensitive to “m” region.

In QCD we expect confinement to introduce a scale like m1 7# 0

Then the s & ¢ modes absorb “m”; just as we saw in
our calculations with rapidity regulators.



Implications for singular Convolutions

Start by ignoring invariant mass UV renormalization

P1 P2

A= 3 [dbivdns, J07.57) maloe) (EW )y B6(V1E)_ [0) | 22F

pl_,27£0

ct I . ¢w($1,u)—$1¢;(0,u) / (Y
et = izl { [an SRRSO 00w (TN 4Dl ) 040, )

. y . f7r ! ¢7’l’(x1)
= finite =-iZ= /O iy St




Implications for singular Convolutions

Now realistic case, with invariant mass UV renormalization

all ¢r(z) — ¢5(x) UV renormalized, but now already a
distribution in €
In this case we find:

A, = —i I /Oldxl(c(x’“’“_’p_)L —5’(x)d(u,u7p)]¢€(w,u,g—:)

Dy 2

new distribution,
but same Brodsky-Lepage anom.dim.

® atlowest order y— dependence cancels between d & 1°

® [l dependence causes mixing between C & d terms,
but they close under RGE.

® preliminary, we are still performing cross-checks



RGE flow

Consider

1

Ar = d(p)¢' (0, ) +/dl‘ C(z, )], o(z, 1)

0

u%éﬁ(x,u) = /dyv(w,y) Ay, 1)

B.L. anom.dim.

1
U=

Crog | x

V(@ y) = [—(

n Y




Separate into 2 equations:  C mixes into d and visa-versa

g i) = = | o aCo )" — 10 ()] — i) T 0),
u%[yC(y,u)L = —/0 dx xC(, ) [%v(m‘,y) —yV“’O)(O,y)L — N(u,ﬂa)[m“’o)(oay)h
H/_/

careful: e distribution for T =y

e plus function for y = 0

® vanishesas x, as £ — 0

110(0,y) = X2 [(1 : y)+ - %5'(?4)]

7

Inx

[C(a:)L ~ {—th [asln(u)—jt...LjL [aﬁhﬂ(m — +,..L+...
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Summary

e Differential formulation of continuum EFT
new tools for thinking about field theory modes

* Resolves singularities.

e Interesting applications in B-physics and
to processes with hard scattering

Open Issues

® Derive factorization theorems for processes with this method

® Level of universality for %°

® Factorization theorem with Wilsonian rapidity regulator

® Use of gauge invariant IR regulator, n° # 0, rather than m



THE END




